文章编号:0258-7025(2002)11-0969-03

种籽光注入非谐振 KTP 光参量振荡器

王 骐,姚宝权,王月珠

(哈尔滨工业大学光电子技术研究所,可调谐激光国家级重点实验室,黑龙江哈尔滨150001)

提要 采用 Nd: YAG 激光倍频后剩余的1.064 μ m 基频光抽运非临界相位匹配 KTP 光参量振荡器(OPO),产生的 1.57 μ m 激光作为种籽光注入到 Nd: YAG 532 nm 倍频激光抽运的非谐振双晶体走离补偿的 KTP OPO 谐振腔中, 使得 OPO 阈值降低 30%,能量转换效率提高 5%。

关键词 光参量振荡器 非谐振腔型 "KTP 种籽光注入

中图分类号 TH 741 文献标识码 A

Non-resonant KTP Optical Parametric Oscillator with Injection Seeding

WANG Qi, YAO Bao-quan, WANG Yue-zhu

(National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001)

Abstract The 1.57 μ m signal light produced by non-critically phase-matched KTP optical parametric oscillator (OPO) pumped by the depleted 1.064 μ m Nd: YAG laser after frequency-doubled conversion is injection-seeded into another non-resonant KTP OPO pumped at 532 nm with dual-crystal walk-off compensating configuration. The threshold of non-resonant OPO is reduced by 30%, and energy conversion efficiency is increased by a factor of 5%.

Key words optical parametric oscillator , non-resonant cavity , KTP , injection-seeded

1 引 言

光参量振荡器(OPO)作为一种可调谐相干光 源,能够产生从紫外到远红外的激光辐射,已广泛应 用于激光光谱学、激光差分吸收雷达、人眼安全激光 测距、激光定向红外干扰等领域。

单共振光参量振荡器(SRO)因为只有信号波或 闲频波在腔内谐振,没有不同波长的激光模式竞争, 因而功率和输出频率的稳定性好于双共振光参量振 荡器(DRO),成为 OPO 普遍采用的工作方式。SRO 的稳定振荡是从光波噪声中建立起来的,因而要求 抽运光有较高的峰值功率和多次往返振荡。一般要 降低起振阈值,可采取缩短腔长、增加晶体有效增益 长度、提高输出耦合镜的反射率、减小腔内的各种损 耗、抽运光反向抽运等方式。另外,在单共振 OPO 谐振腔中采用注入种籽光的形式,克服参量噪声,提 升初始振荡功率水平,也可降低 OPO 起振阈值^{1]}; 如果注入的种籽光是窄线宽的,还可起到控制 OPO 线宽作用^{2]}。本文利用 Nd: YAG 基频光抽运的90° 相位匹配 KTP OPO 作为种籽源,注入到另一 532 nm 倍频光抽运的双晶体走离补偿 KTP OPO,研究 了注入光对 OPO 阈值及效率的影响。

2 实验装置

实验装置如图 1 所示,抽运激光源为 PIANO-1000 型 Nd: YAG 激光器,基频光 1064 nm 能量最 大可达 1 J,倍频光 532 nm 能量大于 400 mJ。基频 光脉冲宽度(FWHM 约 13 ns,激光的发散角(全宽 度)小于 1 mrad,光束质量 M^2 因子值小于 2,基本 满足光参量振荡器所要求的高峰值功率密度和高光 束质量。其中倍频晶体为 LBO,采用的是 θ =

收稿日期 2001-07-10;收到修改稿日期 2001-11-26

作者简介 汪骐(1942.3—) 男 山东莱州市人 哈尔滨工业大学光电子技术研究所教授、博士生导师 主要从事白光激光、 非线性光学技术、激光成像雷达技术研究。E-mail qiwang@hope.hit.edu.cn

90℃ [类匹配 , e + e → o), 前端面镀 1064 nm 增透 膜 后端面镀 532 nm 和 1064 nm 增透膜。1.57 um 种籽光由非临界相位匹配($\theta = 90^\circ, \phi = 0^\circ$) KTP OPO获得 KTP 晶体尺寸 7 mm×7 mm×25 mm, 两端镀 1.064 μm 和 1.57 μm 增透膜。OPO 的腔型 采用平行平面腔,所有的镜片都是以 K9 玻璃为基 底。输入镜 M_1 对 1.57 μ m 全反(R = 99.8%),对 $1.06 \ \mu m$ 高透(T = 86%);输出镜 M_2 对 $1.06 \ \mu m$ 波长的光高透(T = 96%),对 1.57 μ m 高反($R \approx$ 82%);反射镜对 1.06 µm 全反,对 1.57 µm 高透 (T > 90%),主要滤除抽运光。水平偏振的 Nd: YAG 1.064 µm 激光经一半波片后,偏振方向变成 垂直偏振,输出的 1.57 µm 激光也为垂直偏振,从 而满足 532 nm 激光抽运的 KTP OPO 的 Ⅱ 类(o → o + e)相位匹配要求;同时通过旋转半波片来调节 垂直偏振方向上的 1.064 µm 抽运光能量大小 ,继 而控制 1.57 μm OPO 输出激光能量。

图 1 注入放大种籽光的双晶体走离补偿 KTP OPO 实验装置

Fig.1 Experimental configuration of double-crystal walkoff compensating KTP OPO with seeder injected for amplification

532 nm 激光经四个 45°全反镜组成的光学延迟 器延迟 1~4 ns 后进入另一非谐振 KTP OPO 谐振 腔中,以使 532 nm 抽运光与 1.57 μm 注入光的脉 冲在时间上相重叠。

532 nm 激光抽运的非谐振 KTP OPO,同样采 用平面平行腔。整个 OPO 腔长约 60 mm,KTP 晶 体尺寸都为 8 mm × 10 mm × 15 mm,两个端面镀 532 nm 增透膜,切割角度都是 62.7°(\$\phi = 0°)。两 块晶体分别放置在两个转台上,步进马达拖动一个 转台,并通过磨擦轮带动另一个转台互为反向转动。

532 nm 抽运的 KTP OPO 谐振腔中,腔镜 M₃ 左端面镀带宽范围为 1.5 ~ 1.8 μm 全反膜,腔镜

M₄ 对腔内信号波 0.76~0.88 μm 长波全反。532 nm 全反镜一个作用是滤除抽运光,另一个作用是 反向抽运产生回程增益。因为两个腔镜 M_4 和 M_3 分别对信号波和闲频波全反,腔内三波通过电磁波 相互耦合方式消耗抽运光能量。同时放大信号波和 闲频波 而不是通过某一波谐振的方式进行振荡放 大 因而称非谐振光参量振荡器^{2]}。该谐振腔结构 的特点是在前向和后向分别输出单一波长的激光, 而不象其他类型 OPO 在同一方向输出信号波和闲 频波两个波长的激光。1.57 µm 种籽光经两个全反 射棱镜后约 80%能量注入到非谐振 OPO 谐振腔 中 然后被 M, 按原光路反射回后 ,与抽运光进行耦 合放大同时产生 0.804 μ m 的信号光 信号光经 M_4 反射后从分光镜 BS4 输出。用 ED500 能量计接示 波器监测信号光能量幅度,而能量的精确测量是用 NEWPORT 2835C 能量计。

3 实验结果及分析

首先利用 WDG-30 光栅单色仪(闪耀波长 2 μ m)精确测量了 Nd: YAG 基频光抽运的 KTP OPO 输出波长,出射狭缝处用 PbS₂ 探测器接收,微弱信 号经 Model 113 低噪声前向放大后在示波器观测输 出信号,测量的波长为 1.572 μ m。非谐振 KTP OPO 信号光波长的测量采用 Burleigh WA-4500 脉 冲波长计,测量的结果为 0.804 μ m,线宽约 0.2 nm。

研究了在无 1.57 μm 激光注入的条件下,单晶 体和双晶体走离补偿 KTP OPO 输出能量和效率。 图 2 是单晶体和双晶体 KTP OPO 不同信号光波长 对应的输出能量比较,在 92 mJ 的抽运条件下,在 804 nm 处双 KTP 晶体 OPO 能量为 11 mJ,而单 KTP 晶体 OPO 能量为 8 mJ,在 780~920 nm 调谐 范围内能量平均高出 2~3 mJ。双晶体走离补偿 OPO 较单晶体 OPO 有一定的优越性^[3]:1)走离效 应得到一定的补偿,增加了晶体的接受角,允许发散 角较大的激光参与抽运,2)增益长度增加了近一 倍,这样有利于 OPO 阈值的降低和效率的提高。

由于采用非谐振的腔型结构 ,1.57 μm 激光约 80%注入到非谐振 OPO 腔中参与非线性耦合振荡 放大。激光器调节过程中 ,首先调整 OPO 腔内其中 的一块 KTP 晶体角度 ,注意观察示波器输出的信号 光幅度 ,如果幅度有明显增加且达到最大 ,表明注入 光与腔内的长波闲频光相匹配。而后利用同样的方

图 2 单晶体和双晶体走离补偿 KTP OPO 不同波长 信号光输出能量比较

Fig.2 Comparison of output energy of single-crystal KTP OPO with double-crystal one at different signal wavelength

图 3 双晶体走离补偿 KTP OPO 信号光输出能量与 注入脉冲能量的关系

法调节腔内另一块晶体角度,使输出达到最大,这样 两块晶体的晶轴角度完全匹配。在确定的抽运功率 下,随着 1.57 μm 注入光能量的增加,OPO 的信号 光能量也随之增加。但受抽运光所能提供的峰值功 率限制,注入光能量增大时 OPO 能量放大倍数减 小,如图 3 所示。

图 4(a)表示在有无种籽光注入的条件下,OPO 输出的信号光能量与抽运能量的关系。将图 4(a) 线性拟合,结果得出无种籽光注入时 OPO 阈值为 24 mJ,有种籽光注入时阈值为 17 mJ,阈值降低 30%。注入 OPO 能量转换效率比无注入 OPO 更快 达到最大值,能量转换效率最大高出 5%,平均提高 约 3 个百分点,如图 4(b)所示。单晶体注入 OPO 最高能量转换效率 13%,而双晶体注入 OPO 的最 高效率 18%。

最后验证了注入放大非谐振 KTP OPO 的调谐 特性。Nd:YAG 基频光抽运的 KTP OPO 偏离非临

图4 在有无种籽光注入条件下 KTP OPO 输出能量(a) 及转换效率(b)与抽运能量的关系

Fig.4 Output energy (a) and conversion efficiency (b) of KTP OPO dependence on pump energy with and without seeder

界相位匹配 90°),即 KTP 晶体的相位匹配角在 79° ~90°之间变化时,注入光在 1.57~1.60 μm 调 谐^{4]},非谐振 KTP OPO 调谐范围在 0.795~0.804 μm。由于受到晶体通光孔径的限制,注入光调谐范 围较小,因而影响到非谐振 KTP OPO 的调谐范围。

参考文献

- 1 A. V. Smith, W. J. Alforld, T. D. Raymond. Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator[J]. J. Opt. Soc. Am. B, 1995, 12 (11) 2253 ~ 2267
- 2 W. R. Bosenberg, Dean R. Guyer. Broadly tunable, single-frequency optical parametric frequency-conversion system [J]. J. Opt. Soc. Am. B, 1993, 10(9):1716~ 1722
- 3 D. J. Armstrong, W. J. Alford, T. D. Raymond *et al.*. Parametric amplification and oscillation with walkoffcompensating crystals [J]. J. Opt. Soc. Am. B, 1997, 14(2):460~474
- 4 Y. Z. Wang, B. Q. Yao, Q. Wang. KTP optical parametric oscillator with both critically and noncritically phase-matching [J]. *Acta Optica Sinica* (光学学报), 2000, **20**(10):1368~1373 (in Chinese)